Electrochemical Performance of Porous Carbon/Tin Composite Anodes for SodiumIon and LithiumIon Batteries

نویسندگان

  • Yunhua Xu
  • Yujie Zhu
  • Yihang Liu
  • Chunsheng Wang
چکیده

The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na-ion and Li-ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na-ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li-ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na-ion batteries is mainly due to the large Na-ion size, resulting in slow Na-ion diffusion and large volume change of porous C/Sn composite anode during alloy/ dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy-based anode materials for Na-ion batteries.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved electrochemical performance of tin-sulfide anodes for sodium-ion batteries

Due to their highly reversible capacity, tin-sulfide-basedmaterials have gained attention as potential anodes for sodium-ion and lithium-ion batteries. Nevertheless, the performance of tin sulfide anodes is much lower than that of tin oxide anodes. The aim of the present investigation is to improve the electrochemical performances of SnS anodes for sodium-ion batteries using conventional organi...

متن کامل

Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance.

Nitrogen-doped activated porous carbon fibres (ACFs) were prepared as anode materials for Na-ion batteries. They exhibit excellent electrochemical performance, especially rate performance. The excellent rate performance is ascribed to the fibre-like morphology and the facilitated charge transfer. The influence of nitrogen functionalities on charge transfer and electrochemical performance of N-d...

متن کامل

Sponge-like porous carbon/tin composite anode materials for lithium ion batteries

A novel sponge-like porous C/Sn composite is synthesized by dispersing SnO2 nanoparticles into a softtemplate polymer matrix followed by carbonization. The mesoporous C/Sn anodes can deliver a capacity as high as 1300mAh g 1 after 450 charge/discharge cycles, and provide a capacity of 180mAh g 1 even at 4000 mA g 1 charge/discharge current density. An extra reversible capacity over the theoreti...

متن کامل

Fabrication and Characterization of SnO2/Graphene Composites as High Capacity Anodes for Li-Ion Batteries

Tin-oxide and graphene (TG) composites were fabricated using the Electrostatic Spray Deposition (ESD) technique, and tested as anode materials for Li-ion batteries. The electrochemical performance of the as-deposited TG composites were compared to heat-treated TG composites along with pure tin-oxide films. The heat-treated composites exhibited superior specific capacity and energy density than ...

متن کامل

Ultrafine tin nanocrystallites encapsulated in mesoporous carbon nanowires: scalable synthesis and excellent electrochemical properties for rechargeable lithium ion batteries.

A morphology-conserved transformation yields Sn@C nanowires (UTP@CW, ∼21 wt% carbon and ∼77 wt% tin) with a high encapsulation density of ultrafine tin nanoparticles in porous carbon nanowires, which exhibit excellent reversible capacities and cycling performance for lithium ion batteries, especially at high current rates.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012